Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration

Autores:

Molina-Montenegro, M.A., Acuña-Rodríguez, I.S., Torres-Díaz, C., Gundel, P.E., Dreyer, I.

Resumen:

Climatic change is pointed as one of the major challenges for global food security. Based on current models of climate change, reduction in precipitations and in turn, increase in the soil salinity will be a sharp constraint for crops productivity worldwide. In this context, root fungi appear as a new strategy to improve plant ecophysiological performance and crop yield under abiotic stress. In this study, we evaluated the impact of the two fungal endophytes Penicillium brevicompactum and P. chrysogenum isolated from Antarctic plants on nutrients and Na+ contents, net photosynthesis, water use efficiency, yield and survival in tomato and lettuce, facing salinity stress conditions. Inoculation of plant roots with fungal endophytes resulted in greater fresh and dry biomass production, and an enhanced survival rate under salt conditions. Inoculation of plants with the fungal endophytes was related with a higher up/down-regulation of ion homeostasis by enhanced expression of the NHX1 gene. The two endophytes diminished the effects of salt stress in tomato and lettuce, provoked a higher efficiency in photosynthetic energy production and an improved sequestration of Na+ in vacuoles is suggested by the upregulating of the expression of vacuolar NHX1 Na+/H+ antiporters. Promoting plant-beneficial interactions with root symbionts appears to be an environmentally friendly strategy to mitigate the impact of climate change variables on crop production.

Año: 2020

Palabras claves:

Composition, abundance and sources of anthropogenic marine debris on the beaches from Ecuador – A volunteer-supported study

Autores:

Gaiborah, N., Condo-Espinel, V., Cornejo-Rodríguez, M.H., Darquea, J.J., Pernia, B., Domínguez, G.A., Briz, M.E., Márquez, L., Laaz, E., Alemán-Dyer, C., Avendaño, U., Guerrero, J., Preciado, M., Honorato-Zimmer, D., Thiel, M.

Resumen:

This study represents an inter-institutional effort that was supported by more than 400 volunteers. We sampled Anthropogenic Marine Debris (AMD) on 26 beaches, including one beach from Galapagos Islands. AMD was mainly composed of plastics (>60%), followed by cigarette butts, paper and metal. Average AMD density on the continental beaches was 1.31 ± 1.03 items m−2 (mean ± SD). AMD densities and the proportion of plastics were higher on some beaches located on the Gulf of Guayaquil, suggesting that many of the plastic items found on these beaches were, likely, drifted by the swift currents of the Guayas River. Additionally, the overall results indicate that most litter on continental beaches from Ecuador has local sources. Recommendations include marine pollution education and public awareness campaigns to reduce the consumption of plastic bags, as well as a ban on harmful single-use plastics.

Año: 2020

Palabras claves: Marine litter, Beach, Plastics, Pollution, Litter sources, Single-use items

The physical oceanography of the transport of floating marine debris

Autores:

van Sebille, E., Aliani , S., Lavender Law, K., Maximenko, N., Alsina, J.M., Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A., Delandmeter, P., Egger, M., Fox-Kemper, B., P Garaba, S., Goddijn-Murphy, L., Hardesty, B.D., Hoffman, M.J., Isobe, A., Jongedijk, C.E., Kaandorp, M.L.A., Khatmullina, L., Koelmans, A.A., Kukulka, T., Laufkötter, C., Lebreton, L., Lobelle, D., Maes, C., Martinez-Vicente, V., Morales Maqueda, M.A., Poulain-Zarcos, M., Rodríguez, E., Ryan, P.G., Shanks, A.L., Shim, W.J., Suaria, G., Thiel, M., van den Bremer, T.S., and Wichmann, D.

Resumen:

Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales.

Año: 2020

Palabras claves:

Fungal Endophytes Exert Positive Effects on Colobanthus quitensis Under Water Stress but Neutral Under a Projected Climate Change Scenario in Antarctica

Autores:

Hereme, R., Morales-Navarro, S., Ballesteros, G., Barrera, A., Ramos, P., Gundel, P.E., and Molina-Montenegro, M.A.

Resumen:

Functional symbiosis is considered one of the successful mechanisms by which plants that inhabit extreme environment improve their ability to tolerate different types of stress. One of the most conspicuous type of symbiosis is the endophyticism. This interaction has been noted to play a role in the adaptation of the native vascular plant Colobanthus quitensis to the stressful environments of Antarctica, characterized by low temperatures and extreme aridity. Projections of climate change for this ecosystem indicate that abiotic conditions will be less limiting due to an increase in temperature and water availability in the soil. Due to this decrease in stress induced by the climate change, it has been suggested that the positive role of fungal endophytes on performance of C. quitensis plants would decrease. In this study, we evaluated the role of endophytic fungi on osmoprotective molecules (sugar production, proline, oxidative stress) and gene expression (CqNCED1, CqABCG25, and CqRD22) as well as physiological traits (stomatal opening, net photosynthesis, and stomatal conductance) in individuals of C. quitensis. Individual plants of C. quitensis with (E+) and without (E−) endophytic fungi were exposed to simulated conditions of increased water availability (W+), having the current limiting water condition (W−) in Antarctica as control. The results reveal an endophyte-mediated lower oxidative stress, higher production of sugars and proline in plants. In addition, E+ plants showed differential expressions in genes related with drought stress response, which was more evident in W− than in W+. These parameters corresponded with increased physiological mechanisms such as higher net photosynthesis, stomatal opening and conductance under presence of endophytes (E+) as well as the projected water condition (W+) for Antarctica. These results suggest that the presence of fungal endophytes plays a positive role in favoring tolerance to drought in C. quitensis. However, this positive role would be diminished if the stress factor is relaxed, suggesting that the role of endophytes could be less important under a future scenario of climate change in Antarctica with higher soil water availability.

Año: 2020

Palabras claves: functional symbiosis, Antarctica, climate change, Colobanthus quitensis, osmoprotective molecules, water stress, abscisic acid

Critical vulnerability nodes in the municipality of Salamanca (Choapa Valley, Chile): A look at the interaction between ater, mining, agriculture, and society in the context of climate change, in In Vulnerability Studies in the Americas

Autores:

Sonia Salas, Angelo Araya, Andrés Bodini

Resumen:

Año: 2020

Palabras claves:

Multiple reproductive modes of Myrcianthes coquimbensis (Myrtaceae), an endangered shrub endemic to the Atacama Desert

Autores:

Patricio García-Guzmán, Andrea P. Loayza, Francisco A. Squeo

Resumen:

Many plants can produce seeds via multiple reproductive modes, such as selfing and outcrossing. Having multiple reproductive modes can be advantageous if it assures seed production when outcrossing fails, which is important for species inhabiting environments where pollinators are scarce or variable. However, it can also be disadvantageous due to the fitness costs associated to selfing. Consequently, plants have mechanisms to reduce the incidence of selfing. Here we examined the breeding system of Myrcianthes coquimbensis; this threatened Atacama Desert shrub is the last species to bloom in the community and exhibits low visitation rates per flower because pollinators are less abundant. Our aim was to determine whether this plant can produce fruits by modes other than outcrossing, and whether it possesses floral traits to prevent sexual interference. We conducted experimental flower treatments in two localities to determine whether fruits were produced by outcrossing, selfing, autonomous selfing and agamospermy. We also evaluated stigma receptivity and pollen viability during a flower’s lifespan. M. coquimbensis developed fruits and seeds by all the reproductive modes assessed, including selfing and agamospermy. Flowers presented partial segregation of sexual functions, with the peak of pollen viability occurring before the peak of stigma receptivity. Selfing is unavoidable in M. coquimbensis and likely interferes with outcrossing. Coupled with possible early inbreeding depression, it probably results in a cost for seed production. Our results suggest that this species may be vulnerable in scenarios where pollinators are scarce; however, agamospermy may provide an alternative route of seed production in these scenarios.

Año: 2020

Palabras claves: Breeding system, Agamospermy, Selfing, Mix-Mating, Protandry, Reproductive assurance, Sexual interference

Combined effect of pCO2 and temperature levels on the thermal niche in the early benthic ontogeny of a keystone species

Autores:

Manríquez, P., Jara, M., González, C., Díaz, M., Brokordt, K., & Lattuca, M., Peck, M.A., Alter, K., Marras, S., Domenici, P.

Resumen:

We evaluated the effects of projected, near future ocean acidification (OA) and extreme events of temperature (warming or cooling) on the thermal tolerance of Concholepas concholepas, a coastal benthic keystone species. Three separate trials of an experiment were conducted by exposing juvenile C. concholepas for 1 month to one of two contrasting pCO2 levels (~500 and ~1200 μatm). In addition, each pCO2 level was combined with one of four temperature treatments. The control was 15 °C, whilst the other temperatures were 10 °C (Trial 1), 20 °C (Trial 2) and 25 °C (Trial 3). At the end of each trial, we assessed Critical Thermal maximum (CTmax) and min- imum (CTmin) via self-righting success, calculated partial thermal tolerance polygons, measured somatic growth, determined transcription of Heat Shock Proteins 70 (HSP70) and measured oxygen consumption rates. Regardless of pCO2 level, HSP70 transcript levels were significantly higher in juveniles after exposure to extreme temperatures (10 °C and 25 °C) indicating physiological stress. Oxygen consumption rates increased with in- creasing temperature from 10 °C to 20 °C though showed a decrease at 25 °C. This rate was not affected by pCO2 or the interaction between temperature and pCO2. Juveniles exposed to present-day and near future pCO2 levels at 20 °C showed similar thermal tolerance polygonal areas; whilst changes in both CTmin and CTmax at 25 °C and 10 °C caused narrower and broader areas, respectively. Temperature affected growth, oxygen consumption and HSP70 transcription in small juvenile C. concholepas. Exposure to elevated pCO2 did not affect thermal tolerance, growth or oxygen consumption at temperatures within the thermal range normally experi- enced by this species in northern Chile (15-20 °C). At elevated pCO2 conditions, however, exposure to warmer (25 °C) or colder (10 °C) temperatures reduced or increased the thermal area, respectively. This study demon- strates the importance of examining the thermal-tolerance edges to better understand how OA and temperature will combine to physiologically challenge inter-tidal organisms.

Año: 2020

Palabras claves:

pH and other upwelling hydrographic drivers in regulating copepod reproduction during the 2015 El Niño event: A follow-up study

Autores:

Aguilera, V.

Resumen:

The combined upwelling-El Niño (EN) event regulation of the numerically dominant Acartia tonsa (Crustacea, Copepoda) reproduction was examined in a year-round upwelling system (23°S) of the Humboldt Eastern Boundary Upwelling System (EBUS) during the EN 2015. A previous analysis of the environmental regulation of this system is extended here by considering complementary oceanographic information (sea level, stratification indexes) and additional reproductive traits, such as maximum (MaxEPR), median (MedianEPR) and prevalence of egg producing females over a period of six months. Furthermore, field minimum-maximum pH levels were reproduced in three 96-h incubation experiments conducted under variable salinity conditions to evaluate copepod mean EPR, egg size and hatching success. Supporting previous assertions, the warm-high salinity EN 2015 was observed in the study site separately from hydrographic conditions associated with upwelling to non-upwelling regimes. Analysis of similarity-distance (Distance based Linear Model (DistLM)) and normalized data (separate-slope comparison under a General Linear Model (GLM)) showed that reproductive traits were regulated by specific combinations of ambient conditions, and that this regulation was also sensitive to the prevailing hydrographic regime. Thus, upwelling to non-upwelling transitions changing the pH, and EN-associated salinity and stratification shifts, were significantly and strongly linked to almost all reproductive traits (DistLM). Slope comparison (GLM) indicated MaxEPR and MedianEPR variations also underlie the phenology, highlighting the relationship between pH and salinity with biological variations. In conjunction with experimental observations, the current study consistently suggests that pH-variations in the upwelling realm, and EN hydrographic perturbations might underpin responses of plankton populations to climate change in productive EBUS.

Año: 2020

Palabras claves: Eastern boundary upwelling systems, Intra-seasonal variationsInter-annual variations, Ocean acidification, Zooplankton physiology

Antagonistic interplay between pH and food resources affects copepod traits and performance in a year-round upwelling system

Autores:

Aguilera, V., Vargas, C., & Dam, H.

Resumen:

Linking pH/pCO2 natural variation to phenotypic traits and performance of foundational species provides essential information for assessing and predicting the impact of ocean acidification (OA) on marine ecosystems. Yet, evidence of such linkage for copepods, the most abundant metazoans in the oceans, remains scarce, particularly for naturally corrosive Eastern Boundary Upwelling systems (EBUs). This study assessed the relationship between pH levels and traits (body and egg size) and performance (ingestion rate (IR) and egg reproduction rate (EPR)) of the numerically dominant neritic copepod Acartia tonsa, in a year-round upwelling system of the northern (23° S) Humboldt EBUs. The study revealed decreases in chlorophyll (Chl) ingestion rate, egg production rate and egg size with decreasing pH as well as egg production efficiency, but the opposite for copepod body size. Further, ingestion rate increased hyperbolically with Chl, and saturated at ~1 µg Chl. L−1. Food resources categorized as high (H, >1 µg L−1) and low (L, <1 µg L−1) levels, and pH-values categorized as equivalent to present day (≤400 µatm pCO2, pH > 7.89) and future (>400 µatm pCO2, pH < 7.89) were used to compare our observations to values globally employed to experimentally test copepod sensitivity to OA. A comparison (PERMANOVA) test with Chl/pH (2*2) design showed that partially overlapping OA levels expected for the year 2100 in other ocean regions, low-pH conditions in this system negatively impacted traits and performance associated with copepod fitness. However, interacting antagonistically with pH, food resource (Chl) maintained copepod production in spite of low pH levels. Thus, the deleterious effects of ocean acidification are modulated by resource availability in this system.

Año: 2020

Palabras claves: Scientific Reports

Season-dependent effects of ocean warming on the physiological performance of a native and a non-native sea anemone

Autores:

Suárez, J., Hansen, M., Urtubia, U., Lenz, M., Valdivia, N., & Thiel, M.

Resumen:

The effects of ocean warming on the physiological performance of marine organisms have been widely studied. However, few studies have considered the relevance of seasonal acclimation to elevated temperatures and whether native and non-native species have similar tolerances to warming. We tested the hypotheses that the susceptibility to warming in two species of sea anemones from temperate latitudes is (i) higher in winter than in summer, and (ii) higher in the native than in the non-native species. Seasonal variability in the upper thermal tolerance limit of Anthothoe chilensis (native) and Anemonia alicemartinae (non-native) individuals from the northern-central coast of Chile was assessed in laboratory experiments during the austral winter 2015 and summer 2016. In line with our predictions, seawater warming (up to 16 °C above natural levels) significantly suppressed individual performance proxies such as survival and asexual reproduction (longitudinal fission) in the native species, but not in the non-native species. However, asexual reproduction in the non-native sea anemone was rare across warming treatments, and the native species showed a stronger capacity to detach from the substratum under adverse thermal conditions. Negative effects of warming on survival and fission were evident only in winter, when asexual reproduction is more intense in these taxa. Finally, water temperatures of 30 °C or more were lethal for both native and non-native sea anemones. These results show that the non-native species may have a broader thermal tolerance (in terms of survival) than the native taxonomically related species, but the latter displays behavioral adaptations to avoid adverse conditions of high temperatures. We suggest that knowledge about life history traits related to seasonal variations in water temperature and the invasion status of a species can help to predict its performance in a warming ocean.

Año: 2020

Palabras claves: Ocean warming, Thermal tolerance, Seasonality, Anthothoe chilensis, Anemonia alicemartinae